

FACULTY OF HEALTH AND APPLIED SCIENCES

DEPARTMENT OF NATURAL AND APPLIED SCIENCES

QUALIFICATION: BACHELOR OF SCIENCE	
QUALIFICATION CODE: 07BOSC	LEVEL: 7
COURSE CODE: MMP701S	COURSE NAME: MATHEMATICAL METHODS IN PHYSICS
SESSION: JULY 2019	PAPER: THEORY
DURATION: 3 HOURS	MARKS: 100

SUPP	LEMENTARY/SECOND OPPORTUNITY EXAMINATION QUESTION PAPER
EXAMINER(S)	Prof Dipti R Sahu
MODERATOR:	Dr Habatwa V Mweene

	INSTRUCTIONS
1.	Answer ALL the questions.
2.	Write clearly and neatly.
3.	Number the answers clearly.

PERMISSIBLE MATERIALS

Non-programmable Calculators

THIS QUESTION PAPER CONSISTS OF 3 PAGES (Including this front page)

Question 1 [25]

- 1.1 Find the solution of the exponential decay equation N' = -kN with initial condition $N(0) = N_0$ (5)
- 1.2 Show that in a radioactive material, the decay constant k and the half-life τ are related by the equation (5)

 $k\tau = ln2$

- 1.3 Find the differential equation which satisfy y'=f(y) whose solution is $y(t)=4e^{2t}+3$ (5)
- 1.4 Solve $\frac{dy}{dx} + 5y = -2$ (10)

Question 2 [25]

- 2.1 Assume an object weighing 2 lb stretches a spring 6 in. Find the equation of motion if the spring is released from the equilibrium position with an upward velocity of 16 ft/sec. What is the period of the motion? Given acceleration due to gravity is 32ft/sec².
- 2.2 Solve $Y'' + 4Y = e^{3x}$ (10)

Question 3 [25]

3.1 Find K if (5)

 $A = \begin{bmatrix} k-2 & 1 \\ 5 & k+2 \end{bmatrix} \text{ is singular}$

3.2 Solve the following system of equations using Gauss-Jordan elimination: (10) -3x - 2y + 4z = 9

$$3y - 2z = 5$$

$$4x - 3y + 2z = 7$$

3.3 Using the Laplace transform method find the solution for the following equation (10)

$$\frac{\partial}{\partial t} y(t) = e^{(-3t)}$$

with initial conditions y(0) = 4 and Dy(0) = 0

Question 4

[25]

(5)

4.1 Given the unit vector basis as

$$\mathbf{V}_{1} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}; \quad \mathbf{V}_{2} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}; \quad \mathbf{V}_{3} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

express the vector $V_4 = \begin{pmatrix} 5 \\ -3 \\ 7 \end{pmatrix}$ as a linear combination of the above basis

- 4.2 Convert the set $V = \{1, t, t^2\}$ into the orthonormal set $E = \{e_1, e_2, e_3\}$ where $t \in (-1,1)$. (10)
- 4.3 Express first three Legendre polynomials $P_0(x)$, $P_1(x)$ and $P_2(x)$ using the given function (10)

$$P_n(x) = \frac{(2n)!}{2^n (n!)^2} \left[x^n - \frac{n(n-1)}{2(2n-1)} x^{n-2} + \frac{n(n-1)(n-2)(n-3)}{2 \times 4(2n-1)(2n-3)} x^{n-4} - \dots \right]$$

.....END.....